Involvement of human organic anion transporting polypeptide OATP-B (SLC21A9) in pH-dependent transport across intestinal apical membrane.
نویسندگان
چکیده
Some organic anions are absorbed from the gastrointestinal tract through carrier-mediated transport mechanism(s), which may include proton-coupled transport, anion exchange transport, and others. However, the molecular identity of the organic anion transporters localized at the apical membrane of human intestinal epithelial cells has not been clearly demonstrated. In the present study, we focused on human organic anion transporting polypeptide OATP-B and examined its subcellular localization and functionality in the small intestine. Localization of OATP-B was determined by immunohistochemical analysis. Transport properties of estrone-3-sulfate and the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor pravastatin by OATP-B-transfected human embryonic kidney 293 cells were measured. OATP-B was immunohistochemically localized at the apical membrane of intestinal epithelial cells in humans. Uptake of [3H]estrone-3-sulfate and [14C]pravastatin by OATP-B at pH 5.5 was higher than that at pH 7.4. [3H]Estrone-3-sulfate transport was decreased by pravastatin, aromatic anion compounds, and the anion exchange inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, but not by small anionic compounds, such as lactic acid and acetic acid. The inhibitory effect of pravastatin on the uptake of [3H]estrone-3-sulfate was concentration-dependent, and the IC50 value was 5.5 mM. The results suggested that OATP-B mediates absorption of anionic compounds and its activity may be optimum at the acidic surface microclimate pH of the small intestine. Accordingly, OATP-B plays a role in the absorption of anionic compounds across the apical membrane of human intestinal epithelial cells, although it cannot be decisively concluded that pH-dependent absorption of pravastatin is determined by OATP-B alone.
منابع مشابه
JPET #51300, 1 Title page Title: Involvement of Human Organic Anion Transporting Polypeptide OATP-B (SLC21A9) in pH-Dependent Transport across Intestinal Apical Membrane Authors:
Authors: Daisuke Kobayashi, Takashi Nozawa, Kozue Imai, Jun-ichi Nezu, Akira Tsuji and Ikumi Tamai Department of Molecular Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Sciences (D.K., T.N., K.I., I.T.), Tokyo, Japan; Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, Kanazawa University (D.K., T.N., A.T.), Kanazawa, Japan; Core Research for Ev...
متن کاملFunctional characterization of pH-sensitive organic anion transporting polypeptide OATP-B in human.
The pH-sensitive activity of human organic anion transporting polypeptide OATP-B, which is expressed at the apical membrane of human small intestinal epithelial cells, was functionally characterized. When initial uptake of estrone-3-sulfate, a typical substrate of OATP, was studied kinetically, we observed an increase in V(max) with decrease of pH from 7.4 to 5.0, whereas the change in K(m) was...
متن کاملCharacterization of an organic anion-transporting polypeptide (OATP-B) in human placenta.
Organic anion-transporting polypeptides (OATPs) are a family of multispecific carriers that mediate the sodium-independent transport of steroid hormone and conjugates, drugs, and numerous anionic endogenous substrates. We investigated whether members of the OATP gene family could mediate fetal-maternal transfer of anionic steroid conjugates in the human placenta. OATP-B (gene symbol SLC21A9) wa...
متن کاملPredominant contribution of organic anion transporting polypeptide OATP-B (OATP2B1) to apical uptake of estrone-3-sulfate by human intestinal Caco-2 cells.
Human organic anion transporting polypeptide OATP-B (OATP2B1) is a pH-sensitive transporter expressed in the apical membranes of small intestinal epithelial cells. In this study, we have examined the contribution of OATP-B to the uptake of [3H]estrone-3-sulfate in Caco-2 cells in comparison with those of its homologs OATP-D (OATP3A1) and OATP-E (OATP4A1). Immunocytochemical study revealed that ...
متن کاملSubstrate- and pH-specific antifolate transport mediated by organic anion-transporting polypeptide 2B1 (OATP2B1-SLCO2B1).
Human organic anion-transporting polypeptide (OATP) 2B1 (OATP-B; SLCO2B1) is expressed in the apical membrane of the small intestine and the hepatocyte basolateral membrane and transports structurally diverse organic anions with a wide spectrum of pH sensitivities. This article describes highly pH-dependent OATP2B1-mediated antifolate transport and compares this property with that of sulfobromo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 306 2 شماره
صفحات -
تاریخ انتشار 2003